If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+4.9x-300=0
a = 4.9; b = 4.9; c = -300;
Δ = b2-4ac
Δ = 4.92-4·4.9·(-300)
Δ = 5904.01
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.9)-\sqrt{5904.01}}{2*4.9}=\frac{-4.9-\sqrt{5904.01}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.9)+\sqrt{5904.01}}{2*4.9}=\frac{-4.9+\sqrt{5904.01}}{9.8} $
| |x-5|=|2x+3| | | 4z+30=10z | | 9x+6=x+30 | | 4y−1=2y+13 | | |4x+8|+4=16 | | (2x-1)^2=(x+1)^2 | | (20x)-(15x)=100 | | -15+20=-6+20x-9 | | (15x)-(20x)=100 | | -15-20=-6+20x-9 | | 50x=1150 | | |3x+7|=|2x3| | | 11^(-3x)=3 | | 11^-3x=3 | | x^2+10x-18=126 | | 5/9w=-2 | | 6x^+36x+48=0 | | 3(x+4)-2=2x+1 | | 28=1/4x+4 | | 3x+60=30 | | 5(2x+1)-8x=-3 | | 5x+2(1x+7)=14x-7 | | 18=2(q-4) | | 21`=x/18 | | -8n=4n | | 2x-20/3=2× | | 5x-63=-6x-8 | | 5x-63=6x-8 | | 6y+3y+35=50 | | 5(x+8)=8x-64 | | 3(3x-5)=-60 | | 8x+13=12×+7 |